(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
f(s(x), y) → f(x, s(x))
f(x, s(y)) → f(y, x)
f(x, y) → ack(x, y)
ack(s(x), y) → f(x, x)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
ack(s(s(x39_1)), 0) →+ ack(x39_1, ack(s(x39_1), 0))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [x39_1 / s(x39_1)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
ack(0', y) → s(y)
ack(s(x), 0') → ack(x, s(0'))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
f(s(x), y) → f(x, s(x))
f(x, s(y)) → f(y, x)
f(x, y) → ack(x, y)
ack(s(x), y) → f(x, x)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
ack(0', y) → s(y)
ack(s(x), 0') → ack(x, s(0'))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
f(s(x), y) → f(x, s(x))
f(x, s(y)) → f(y, x)
f(x, y) → ack(x, y)
ack(s(x), y) → f(x, x)
Types:
ack :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
ack,
fThey will be analysed ascendingly in the following order:
ack = f
(8) Obligation:
TRS:
Rules:
ack(
0',
y) →
s(
y)
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
f(
s(
x),
y) →
f(
x,
s(
x))
f(
x,
s(
y)) →
f(
y,
x)
f(
x,
y) →
ack(
x,
y)
ack(
s(
x),
y) →
f(
x,
x)
Types:
ack :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
f, ack
They will be analysed ascendingly in the following order:
ack = f
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(10) Obligation:
TRS:
Rules:
ack(
0',
y) →
s(
y)
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
f(
s(
x),
y) →
f(
x,
s(
x))
f(
x,
s(
y)) →
f(
y,
x)
f(
x,
y) →
ack(
x,
y)
ack(
s(
x),
y) →
f(
x,
x)
Types:
ack :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
ack
They will be analysed ascendingly in the following order:
ack = f
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol ack.
(12) Obligation:
TRS:
Rules:
ack(
0',
y) →
s(
y)
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
f(
s(
x),
y) →
f(
x,
s(
x))
f(
x,
s(
y)) →
f(
y,
x)
f(
x,
y) →
ack(
x,
y)
ack(
s(
x),
y) →
f(
x,
x)
Types:
ack :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.